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ABSTRACT | U“W‘\

The diocotron (or slipping stream) instability of low density
(wyK w.) electron beams in crossed electric and magnetic fields is
considered for a cylindrical geometry with a radial electric field and
an azimuthal magnetic field., In the analysis the electrons are
assumed to have no thermal energy, collisional effects are neglected,
the quasi-static approximation is made, and perturbations of the
electric field along the magnetic field are ignored, For a simple
density distribution the important normal modes of the electron beam
correspond to two discrete eigenvalues, A condition for the stability
of these modes is derived, This condition shows that, within the
approximations of the analysis, the electron beam can be stabilized
against diocotron modes of all wavelengths by proper selection of
dimensions. The application of this theory to a proposed toroidally-
shaped space radiation shield is discussed, Assuming the long
straight cylinder geometry to be a reasonable approximation to a
torus with a large radius ratio, it is shown that the crossed field
electron beam surrounding a space radiation shield will, within the
same approximations, be stable against diocotron instabilities when

the beam is sufficiently thick,
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I, INTRODUCTION

This note considers the diocotron (or slipping stream) instabilities
which might occur in a geometry applicable to a proposed toroidally-
shaped space radiation shield, The shield is described in detail by Levy
and Janes  and its important features are shown in Fig, 1. The geometry
of the shie]d is the same as that of a toroidal magnetron as analyzed by
Buneman, © except that for the space shield no outer conducting (or re-
active) surface is involved, Following Buneman, it will be assumed that
the torus can be approximated by a long straight cylinder which can support
waves moving parallel to its axis. The wavelengths of these waves, how-
ever, must be shorter than approximately 27 times the major radius R of
the torus. This approximation neglects the asymmetry of the magnetic
field intensity about the minor axis of the torus and the curvature of the
electron flow direction, However, for reasonable radius ratios, it is
anticipated that the results from an exact toroidal geometry formulation
will not differ from those given by this analysis in any fundamental way.

Instead of considering only a geometry applicable to the space shield,
the more general geometry of Fig., 2 will be analyzed. In the analysis it
will be assumed that the electron density is sufficiently low relative to the
magnetic field intensity so that w  « w_, the symbols referring, respec-
tively, to the plasma and cyclotrgn frequencies, In accord with this
assumption, perturbations in the component of the electric field along
the magnetic field will be ignored. It is further assumed that the electrons
have no thermal energy and that their drift speeds are much less than the
speed of light (the quasi-static approximation).

The diocotron (or slipping stream) instability has been known for some
time and forms the basis of the small-signal theory of the grisgeg field
microwave magnetron, In most treatments of the problem~? *»~»® a planar
model of the electron beam is used. This approximation is generally adequate,
especially when the wavelengths of interest are short compared to the charac-
teristic dimensions of the beam. However, the long wavelength behavior of
the diocotron instability is substantially influenced by the particular geometry
under consideration. This is especially true when, as in the space radiation
shield, the gla7sma frequency w,, is much less than the cyclotron frequency w_.
In this case”* ' growth occurs o%ly for wavelengths which are long compared

to the beam thickness, Since there is an absolute maximum wavelength for
perturbations in the space shield geometry it might be pos sible to exclude unstable
modes altogether if the beam were made sufficiently thick, This note gives a
quantitative evaluation of this effect.



ELECTRON
CLOUD DRIFT

/1 POSITIVELY CHARGED CONDUCTOR
BXY ELECTRON CLOUD

Fig., 1 Idealization of space radiation shield. The space vehicle (the
inner conductor of radius a) is electrostatically shielded from

high energy protons by virtue of the fact that it is charged to a
very high positive potential,

A4130




OUTER
CONDUCTING
CYLINDER

REGION 3

Fig, 2 Cross section of the geometry considered in the text.

A4128



II. BASIC FORMULATION

The geometry to be considered (Fig. 2) consists of two concentric,
perfectly conducting cylinders of radii a and d aligned along the z axis.
An azimuthal magnetic field whose intensity varies inversely with the
distance r from the axis, acts in the space between the two conductors,.
This magnetic field will be written as

B(eo) (r) = B° r /t. (2. 1)

It is consistent with the assumption that the electron drift speed is small
compared to the speed of light to ignore the change in B 2 induced by
the current in the electron beam. In the equilibrium (unperturbed) state
the space between the electrodes is filled with electrons having a density
distribution n(o)(r) which will be left arbitrary for the moment. The elec-
tron density distribution n(o)(r) determines an equilibrium radial electric
field Eif) (r) through Gauss' law:

(o)
_lr__ .ad?_ [r ELO)(r] L ) I (2.2)

‘o

The radial electric field on the inner electrode is related to the electric
charge (per unit axial length) at that surface by

Q

(o)
Er (a) 2T aeo

(2. 3)

In the unperturbed state the electron cloud moves in the axial direction
with a velocity v{0) (r) = E(0) (r)/B(O) (r). Now that part of the radial
electric field which is due to the charge on the inner conductor is propor-
tional to Q/r. Since the magnetic field B(O) is also proportional to 1/,

a particular value of Q merely determines the magnitude of a uniform
velocity of translation for the entire electron cloud. It therefore follows
that the charge on the inner conductor can be made to vanish by trans-
ferring to a coordinate system moving with an appropriate uniform
velocity in the axial direction, Now such a transformation can have no
effect on the stability or otherwise of the electron beam. All that happens
is that the real part of the frequency of the normal modes (waves) is



Doppler shifted; the complex part of the frequency which determines
stability is unaffected. Therefore, without loss of generality, the value
of Q may be taken to be zero. From Eq. (2. 3) it is seen that this choice
also makes the radial component of the electric field at the inner
conductor vanish, The real part of the frequency appropriate to a non-
zero value of O can be found by Doppler-shifting the frequencies deduced
from this analysis. The preceding remarks show that the charge on the
inner conductor and hence the potential applied between the two conductors
have no effect on the stability of the electron beam. Thus, in this
geometry the electron beam cannot be stabilized merely by applying a
large potential between the conducting walls,

It is anticipated that the frequencies of interest in this study will be
of the order of u Z/wc. This frequency is much less than ¢_and very
much less than We.e Therefore, it seems reasonable to 1gno‘?‘e perturba-
tions of the component of the electric field in the direction of the magnetic
field and hence to consider only two dimensional perturbations. These
observations justify taking for the electronic equations of motion:

(2. 4)

where the subscripts r, © and z of B, E, and v indicate, respectively,
radial, azimuthal and axial field components, Applying the quasi-static
approximation the electric field is simply related to a potential ¢ by the
equations:

E =- 29, g -_ 8¢, (2. 5)

The condition of conservation of electrons requires that

an . = 2.6
5T +Y nv 0. ( )

Using Eqs. (2.4) and (2. 5) the equation of conservation of electrons, Egq.
dn 1

(2.6), can be written as
(o)
9@, n/ B "(r)|7)
+ [ ] =0

at Béo)(r) 3 (z, 1)

(2.7)

In order to linearize Eq. (2.7) it will be assumed that the potential ¢ and
the electron density distribution n each have zero order (unperturbed)
and first order (perturbed) components and are of the form




©-
[

= d)(o)(r) + ¢(1)(r) exp [i(kz - wt)j‘

2.8
= n(o)(r) + n(l)(r) exp [i(kz - wt)] ( )

B
|

where as usual the physical quantities are the real parts of the complex
quantities appearing in Eq. (2.8). This choice represents a wave moving
in the z direction (along the direction of electron flow) which will be
growing in time (unstable) if the imaginary part of w is positive., On
linearization with the assumed forms of ¢ and n, Eq. (2.7) yields:

(1)
_ 1 (0) (1) _ k¢ ' '(r) d 2 (o)
[w kVZ (I‘)] n' (r) = ;ZB(eOS () ar [1' n (r] . (2.9)

Substituting Eq. (2.9) in Poisson's equation yields the following differen-
tial equation for the perturbation potential:

(0) % 1 d d ¢(r) 2 z _ ek¢(r) d [_2 (o)
w - k - < dolr) | | )l = Sxelx) 4
[ V2 ] T dr [1’ dr ] o eorzB(g)(r) dr Lr § (1’)]

(2. 10)

where here and henceforth the superscript (1) on the perturbation potential
has been omitted for convenience,

Equation (2. 10) is similar to the equation governing the Kelvin-
Helmholtz instabilit'{ which has been treated extensively in the aerodynamic
literature, 89,10, 11,12 The analogy between the aerodynamic and electro-
magnetic cases has been discussed by Levy7 and will not be considered
further here., In order to solve the analogous aerodynamic problem, it is
customary to set the term on the right of Eq. (2.10) to zero by a particular
choice of the shear which is analogous to n!®/(r) here. Similarly, in this
case, the zero order electron density distribution will be assumed to be

O , a=r<b
2Oy = Nbe/r% , b =r=c (2.11)
O s c<r=d
where N = n(o)(b) is a constant. This choice makes -&f— [rzn(o)(r)] Zero




in each of t%le t}éree regions. It is interesting to note that this choice also
makes o w,  constant throughout the electron beam. In the interior of
each of the three regions, the electron density distribution of Eq. (2.11)
reduces Eq. (2.10) to the much simpler form:

_%_ 'ddT [r Eg—r(-r—)] ~ K e(r) = 0 (2.12)

whose solutions are the modified Bessel functions of the first and second
kind of order zero. In addition, from Eq. (2.9), the perturbed electron
density n 1) (r) vanishes in the interior of each of the three regions. Thus,
the perturbation is greatly simplified and involves no perturbation charge
density at all in the interior of the electron cloud, but merely an accumula-
tion of charge at each of the two free surfaces.

This observation leads to a consideration of the conditions to be
applied to the perturbation potential across the free surfaces at r = b and
r = ¢. First, clearly the perturbed potential ¢(r) must be continuous

across the surface. In order to obtain the change in de(r) across the
surface r = b it is convenient to integrate Eq. (2.10) for a short distance
fromr=b-8§ tor=>b+5% and thenlet 8 —» 0. In performing the integra-
tion it is useful to note that the bracket containing o is virtually constant
over this small range and can therefore be taken out of the integration,
Since ¢(r) is continuous, the integral of ¢(r) over a vanishingly small
range vanishes. Using these facts, integrating Eq, (2.10) and taking the
limit 8 — 0, the following jump condition is obtained:

[w - kv(zo)(b):l 3%‘%‘)

where w, and «, (which vary through the beam) are evaluated at r = b.
A similar analysis at r = ¢ results in the jump condition

[w _ kv(zo)(c]

The specification of the problem is completed by noting that the appropriate
boundary conditions for the perturbed potential on the conducting electrodes
atrzaand r =d are ¢(a) = ¢(d) = 0,

2

w

- P
b_g = k¢(b) o (2. 13)

_ dé(r)
b+ dr

2
w

_ b p
c. %— - k¢(c) < 5 - (2. 14)

do(r)

C+ HI‘

d¢(r)
dr

At this point the problem has been completely specified. The charac-
teristic equation for w can be derived by writing out the eigenfunctions
which satisfy Eq. (2.12) and applying the boundary and jump conditions,
The resulting characteristic equation will be a polynomial in w which will
be of the same degree as the number of surfaces where n(o)(r) is dis-
continuous. For the present case with only two such surfaces the
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characteristic equation is simply a quadratic in w ., Since the coefficients
of the quadratic are real, either both roots will be real or the roots will
occur in complex conjugate pairs. In the latter case, one of the roots
corresponds to a growing (unstable) wave and the other to an evanescent
(damped) wave, Thus, stability can be claimed only when all the roots of
the characteristic equation are real, in which case each wave can
propagate at constant amplitude,.

The method described above cannot, as it stands, be used to make
any firm statement about stability, This is because such a statement can
be made only when the complete set of normal modes is obtained. In the
apove treatment only those modes corresponding to discontinuities in
n'®)(r) have been considered. That this set of modes is not complete is
seen by observing that no initial condition involving a perturbation in the
charge density in the interior of the beam can be described by them. The
remaining modes correspond to a continuous spectrum of eigenva](u s and
come essentially from the vanishing at some point of the [w - kv, ° (r)]

term. An analogous problem has been extensively treated by Case13’ 14
and Dikii'” in connection with the problem of aerodynamic shear flow.
These analyses, which ignore dissipative mechanisms (viscosity) indicate
that all of the normal modes corresponding to the continuous spectrum of
eigenvalues decay like various powers of the time for long times and
therefore are not important in a determination of stability, Since dis-
sipative mechanisms are not considered in this paper (i.e. collisions are
neglected and the electrons are assumed to be cold) formally the con-
tinuous spectrum of eigenvalues can be ignored in the stability analysis.
Stability is therefore determined solely by the normal modes corres-
ponding to the discrete eigenvalues. Inclusion of dissipative mechanisms
could cause the continuous spectrum of eigenvalues to become important
in the stability analysis; however, such considerations are beyond the
scope of the present treatment,



III, ESTABLISHMENT OF THE STABILITY CONDITION

Since no further difficulty of a theoretical nature remains, the eigen-
functions, the dispersion relation, and the condition that both roots of the
latter be real will now be obtained, The first step is to determine the zero
order potential and electric field that are implied by the distribution of
charge specified in Eq. (2. 11)., Since a coordinate system in which Q = 0
is being employed, the zero order electric field in region 1 (a4 r < b)
vanishes identically. Taking the inner conductor (r = a) to be at zero
potential, the zero order potential in region 1 also vanishes identically.

The zero order distributions in the two remaining regions are found to
be:

region2; b<r<c

2
(o) _ Neb r
E, () = -5e— o g
% (3.1)
¢(o)(1‘) - __Zlil(e_bL_ [n _E_]
o
region 3; c<r &£ d
2
) _ Neb c
B )= - = In 4
(3.2)
2 2
R N
)

The solutions of Eq. (2. 12) are linear combinations of the modified
Bessel functions I (kr) and K (kr). The perturbation potential in region 2
(b4 r<c) will be assumed to be

$(r) = p 1 (kr) + y K_(kr) (3. 3)

where B and y are arbitrary constants., The perturbation potential in
region 1 (a € r < b) must vanish at r = a and be continuous with Eq. (3. 3)
at r = b, From these conditions the perturbation potential in region 1 is
found to be:

-11-



BI_(kb) + yK_ (kb)
¢(r) = K _(ka)I _(kb) -K _[kb) T Tka)

[Ko(ka)Io(kr)—Io(ka)Ko(kr)]. Gy

Similarly, the perturbation potential in region 3 (c<r £ d) must vanish at
r = d and be continuous with Eq. (3.3) at r = ¢ and it is found to be:

B I (k) + vK_ (ke)
_ (@] e}
¢(r) = IR (ke) —K (ke T_(kd)

[Ko(kd)lo(kr) - Io(kd) Ko(kr)] .
(3.5)

p—

Applying the jump conditions given by Eqs. (2. 13) and (2, 14) at

r = band r = ¢, respectively, results in the conditions
=5 [B 1, (ka) + YK (ka)]
= [B I (kb) + YK, (kb)] [Io (ka)K_(kb) - I (kb) Ko(ka)] (3. 6)

and

‘Iilc_ [B1_(kd) + vK_(kd)] [w+ kb fn E—] (3.7)

2 [BI(ke) + YK (k)] [I(ka)K (kd) - I (kd)K(ke)]

In these_equations and henceforward, the unit of frequency has been taken
to be w Z/wc which, as before, is evaluated at r = b, The dispersion
relation is now obtained by writing down the condition for consistency of
these two linear homogeneous equations in 3 and y. Defining

a,, = I (ka) K_(kb) - I_(kb)K_(ka) (3. 8)

etc.

the dispersion relation may be written as

-12-




2

a w” + kb [a a
ac

C
ad cd T %ab%d T %agq [n—b_] @

(3.9)

2.2 Cc
- kb %ab ‘:abd’[lwl B T Y cJ’Cd] = 0.

The condition for stability is that the roots w be real and consequently
that the discriminant of the quadratic in w, Eq. (3.9), be positive. Aiter
some reduction, this condition can be written as:

2
C
[aab g t Bac %eq F g bm ‘B‘] - [2 %ab acd] z 0
(3.10)

To the extent that the approximations of the analysis are valid, this is
both a necessary and a sufficient condition for stability,

13-



IV, DEDUCTIONS FROM THE STABILITY CONDITION

In this section the general stability condition of inequality (3. 10) is
examined. First a simple geometrical condition for stability of diocotron
modes of all wavelengths is obtained. Next the implications of this
geometrical condition are considered. Finally the limiting case which
approximates the space radiation shield is examined.

The geometrical implications of the general stability condition of
inequality (3. 10) will now be considered. In the short wavelength limit
(k » o), it can be shown that inequality (3. 10) is always satisfied. In the
long wavelength limit (k — 0), inequality (3. 10) is satisfied if and only if

4[n

plo

fn 2 ¢ [/Znﬁ]z (4.1)
C b y

Numerical computations have shown that the function on the left of inequality
(3.10) is a monotonically increasing function of k, The longest wave-
lengths are the most likely to be unstable, that is, in a given geometry,
Therefore, inequality (4. 1) is a necessary and sufficient condition for
stability of diocotron modes of all wavelengths., Physically this geomet-
rical inequality is satisfied and diocotron stability is guaranteed for
electron beams which are sufficiently thick relative to the distance between
the two conducting electrodes.

Some simple deductions can be made directly from inequality (4. 1).
First it can be seen that thin electron beams (¢ =~ b) always have diocotron
modes of some wavelength which are unstable. Secondly, if either the
inner or outer conductor is removed (i.e. a -0 or d — &), there is
always a diocotron mode of some (sufficiently long) wavelength which is
unstable, Thus, for the space radiation shield case (d — «), there can be
no geometrical arrangement of the electron beam and the inner conductor
which will make diocotron modes of all wavelengths stable. This statement
requires the system to be infinitely long - a point of crucial importance
which will be discussed later,

The two special geometries in which the electron beam extends up to
either conducting wall are of particular interest, In these cases either
a =Db, or ¢c = d, and the left side of inequality (3. 10) becomes a perfect
square, In addition, the left side of inequality (4. 1) vanishes for these
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cases. Hence, stability is guaranteed whenever the beam is in contact
with either conductor, This result is in agreement with the observation
of Knauer™ " that the diocotron instability is essentially an interaction
between waves on two surfaces; when one wave is removed by being
brought into contact with a perfect conductor, instability can no longer
result., Actually, for stability of diocotron modes of all wavelengths it
is not necessary for the conductor to come into contact with the electron
beam; it need only come close enough to satisfy inequality (4. 1).

If, for some choice of the geometrical parameters a, b, ¢, and d,
inequality (4. 1) is not satisfied, there is always some critical value of k,
k.pit» Which makes inequality (3. 10) an equality, Values of k larger than
k.rit lead to stable diocotron modes whereas values of k smaller than
k.pijt lead to growing or unstable diocotron modes. Table I lists, by way
of example, the value of k..;; for a few choices of the parameters a, b,
c, and d, From thcsc numerical results it can be seen that as the
electron beam becomes thicker relative to the distance between the two
conducting electrodes, the critical value of k, k.pits becomes smaller,
Finally, as the beam becomes thick enough to satisfy inequality (4. 1),
the value of k.,it goes to zero and stability is guaranteed for diocotron

modes of all wavelengths,

As previously noted, in the space radiation shield case (d— «)
inequality (4, 1) is not satisfied., Therefore, the diocotron modes with
wave numbers between zero and some k..j; will be unstable. However,
in the toroidally-shaped space radiation shield the electron beam is re-
entrant and a periodic boundary condition must be applied to k, Thus, k
can take on only integral multiples of the minimum value of k, k ine Ina
torus, the maximum wavelength of waves propagating along the minor axis
of the torus is approximately 2m times the major radius R of the torus.
Thus, the minimum value of k is given approximately by

2
Kin ™ 771 = U/R (4. 2)

If the space radiation shield is designed so that k__. is larger than K_,i¢,
then all of the diocotron modes possible for the ré~éntrant electron beam
would be stable,

In examining the space radiation shield case it is convenient to con-

sider a critical value of c instead of k4 As previously noted with
respect to Table I, for constant values 1tthe parameters a and b, the
value of k.rit decreases as c (a measure of the thickness of the beam)

increases, The symbol c* will be used to denote that value of ¢ which
makes k_ .., exactly equal to k_ ;.. Thus, values of ¢ greater than c*
correspond to stable electron beams and vice versa, In the space
radiation shield case the stability condition of inequality (3. 10) must be
modified by letting the radius d of the outer electrode approach infinity,
Letting d— e, the stability condition of inequality (3, 10) becomes

~16-




TABLE 1

a b ¢ d crit
0 2 3 4 1.28
0 2 6 10 0. 37
0 3 6 10 0. 46
1 2 3 4 1.20
1 2 3 10 1.26
1 2 6 10 0.11
1 3 4 10 1.30
1 3 6 10 0.40
1 3 8 10 0.03
1 2 3 oo 1.25
1 2 6 0 0.20
1 3 6 °0 0.41
0 2 3 0 1.32
0 2 6 o 0.38
0 3 6 0 0.47

Table I. Value of k. .;; above which stability exists and below which
instability exists for given values of a, b, ¢, and d, The units of
a, b, c, and d are arbitrary and the units of k are the reciprocal

. . crit
of these same arbitrary units,

-17-



[aab K (kb) + a__K_(ke) + K_(ka) fn %]2 - [2 oy Ko(kc):,ZZ 0.

(4. 3)

The critical value c* is found by making inequality (4. 3) an equality and
solving the resulting equation numerically for the value of ¢ which satisfies
it.

Fig., 3 is a plot derived from the stability condition of inequality (4. 3).
Essentially, it shows how thick the electron beam must be to assure
stability, In Fig. 3 the abscissa (l-a/b) measures how near the inner edge
of the electron beam is to the outer edge of the terus, When {l-a/b) = 0,
the electron beam touches the torus and (in the sense of this section)
stability is guaranteed., Since k 1is approximately k, ;,, the parameter
ka 1is approximately equal to a/R (the radius ratio of the torus) which can
be considered a fixed quantity in the stability analysis, Similarly kc*
is approximately equal to c*/R, a measure of the thickness of the electron
beam relative to its maximum thickness R. The region kc* > 1 is not
important in the present analysis since this region is excluded for toroidal
geometry,

From Fig. 3 it can be seen that as b approaches a, the critical value
c* decreases, Physically this means that as the beam is brought closer to
the torus, the required thickness of the electron beam becomes smaller,.
Also, for a given value of (l-a/b), the ratio of the required thickness of the
electron beam to the major radius R of the torus becomes smaller for
decreasing values of the parameter ka (the minor to major radius ratio
of the torus)., Thus, in general, for a reasonable electron beam thickness,
the space radiation shield should be designed with a moderately large major
to minor radius ratio and the inner edge of the electron beam as close as
possible to the torus. A typical reading of Fig. 3 shows that for (1-a/b) =
0.1 (a/b=0,9), and ka = 0.20 (a2 major to minor radius ratio for the torus
of 5:1) the beam thickness should be at least 45% of the major radius for
stability,
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Fig, 3 Stability results for the space radiation shield case (d— )
computed from inequality (4. 3). Regions of stability are above
and to the left of each curve of constant ka and regions of
instability are below and to the right of each curve,
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CONCLUSIONS

Diocotron instabilities in a cylindrical geometry with a radial elec-
tric field and an azimuthal magnetic field have heen studied, To the
extent that the approximations of the analysis are valid, it has been
demonstrated that proper selection of dimensions can ensure stability
against diocotron instabilities of all wavelengths in this geometry., The
application of this theory to a proposed space radiation shield has been
discussed., By further assuming that a torus can be adequately approxi-
mated by a cylinder, it has been found that a space radiation shield of
reasonable physical proportions can be made stable against diocotron

instabilities,
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